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Abstract
The decimation map D for a network of admittances on an n-simplex lattice
fractal is studied. The asymptotic behaviour of D for large-size fractals is
examined. It is found that in the vicinity of the isotropic point the eigenspaces of
the linearized map are always three for n � 4; they are given a characterization
in terms of graph theory. A new anisotropy exponent, related to the third
eigenspace, is found, with a value crossing over from ln[(n + 2)/3]/ln 2 to
ln[(n + 2)3/n(n + 1)2]/ln 2.

PACS numbers: 64.60.Ak, 05.45.Df, 84.30.Bv

1. Introduction

The ‘n-simplex lattice’, built through the iteration of a complete graph Kn, is the generalization
of the usual two-dimensional Sierpiński gasket fractal to a d-dimensional space, with n = d+1.
It was first introduced 30 years ago by Dhar [1] (in a slightly different, ‘truncated’ version) as
one of the first examples of lattices with nonintegral dimensionality.

The problem of electrical networks on n-simplex lattices was initially considered under
the simple form of isotropic resistor networks [2], modelling the conducting backbone of a
percolating system at criticality. The aim was to study the anomalous scaling law for the
total conductance σ (or complex admittance, in the case of a general passive element) as a
function of the size: it was found that σ ∼ L−ζ̄ , with ζ̄ = ln[(n + 2)/n]/ln 2. It was soon
realized [3] that on these fractals the macroscopic conductance is isotropic even starting from
microscopic anisotropy. Hence, anisotropic networks were considered, in order to find the
scaling exponent λ̄ with which the conductance anisotropy (defined as the difference from 1
of the ratio of two conductances σα and σβ measured along different directions) vanishes:
(σα − σβ)/σβ ∼ L−λ̄.

The problem consists in finding the decimation transformation D connecting the
conductances of generation g + 1 of a fractal to those of generation g, then linearizing D
near the isotropic point. The largest eigenvalue of the linearized map, e1 = n/(n + 2), is then
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related to the isotropic exponent by ζ̄ = − ln e1/ln 2; the second eigenvalue e2 is related to
the anisotropy exponent by λ̄ = ln(e1/e2)/ln 2. Since no simple method is known for finding
D for n > 3, the analytical challenges in the anisotropic case are much greater. The greatest
effort in this direction at that time was that by Vannimenus and Knežević [3], who managed
to find λ̄ for n = 4, n = 5, and suggested the general form λ̄ = ln[(n + 2)/(n + 1)]/ln 2
(corresponding to e2 = n(n + 1)/(n + 2)2). More recently, in the light of a renewed interest in
the restoration of isotropy in several models defined on fractals [4], Jafarizadeh [5] succeeded
in proving the formula suggested in [3] for n-simplex lattices for any n.

The general problem of the decimation of a network of conductances on the n-simplex
lattice had never been completely solved up to now. In a previous paper [6], we found the
exact map for the decimation of a network of impedances on a three-dimensional Sierpiński
gasket (4-simplex lattice), with a method based on the direct manipulation of the Laplacian
matrix of the circuit. In this paper, we generalize that method and show a detailed procedure
to find the decimation map D for arbitrary n. Instead of conductances, more general complex
admittances will be used. For the first time, a systematic analysis of the asymptotic expansion
of D near the isotropic fixed point will be given.

The main results are the following. There are always exactly three eigenvalues regardless
of n, that is, of the dimension of the fractal (being two just for the two-dimensional system).
The third eigenvalue is e3 = 3n/(n + 2)2 and is related to a secondary anisotropy exponent
equal to ln[(n + 2)/3]/ln 2; however, this exponent crosses over to ln[(n + 2)3/n(n + 1)2]/ln 2
for large systems. The eigenspaces corresponding to e2 and e3 will be studied for the first
time. We will show that the eigenvectors corresponding to e2 are those that allow a direct
simplified (mesh-to-star) treatment of the problem. It will also be found that the eigenspace
corresponding to e3 is related to the space of cycles of even length on the complete graph Kn,
and has the highest dimensionality for n large, scaling as n2.

The plan of the paper is as follows. In section 2, we introduce the model and the notation
we will use throughout the paper. In section 3 we describe our general decimation procedure,
which we apply first to the case of the isotropic fractal and, second, to that of an isotropic fractal
with a small perturbation, which provides us with the linear expansion of the decimation map
D in the vicinity of the isotropic point. Section 4 examines the eigenvalues and eigenspaces
of the linearized map. Section 5 contains our conclusions.

2. Basic cell and notations. Construction of a network of admittances.
Statement of the problem

The n-simplex lattice is built by the iteration of a basic cell (figure 1). The basic cell is the
complete graph Kn (n-simplex), with n vertices and n(n − 1)/2 links, one between each pair
of vertices. We follow the convention to arrange the vertices of the graph as those of an
n-polygon and label them with the numbers from 1 to n counterclockwise. We recall that
two links are called adjacent when they share a vertex, and non-adjacent when they do not.
In a Kn graph (see figure 2 for graph K5) each link has exactly 2(n − 2) adjacent links and
1/2(n − 2)(n − 3) non-adjacent links (corresponding to a Kn−2 complete subgraph).

2.1. Construction of a network of admittances. Kirchhoff’s laws for the basic cell

We consider first a general electrical network, which can be represented by a graph, i.e., a set
of nodes connected by links, with an electrical pole on each node i and an electrical element on
each link. We will consider here only linear passive elements, that is resistances, inductances
and capacitances. We call z(i,j) the impedance of the element (if any) connecting nodes i and
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Figure 1. Top: three Kn complete graphs. The n-simplex lattice is a fractal built using a Kn as
the basic cell. Bottom: the construction of the two-dimensional Sierpiński gasket, or 3-simplex
lattice, starting from the basic cell.

Figure 2. We consider the Kn graph and focus on one of its links (for example link (1, 2) in graph
K5 on the left). The number of adjacent links is 2(n − 2) (middle): n − 2 incident in vertex 1 and
n − 2 incident in vertex 2. The number of non-adjacent links is 1/2(n − 2)(n − 3) (right), that is
the number of links of the Kn−2 subgraph obtained by removing vertices 1 and 2 from Kn.

j , and σ(i,j) = z−1
(i,j) its admittance. Vi is the potential at node i and Ii is the external current

incoming at node i. The key formula we will use in the following is Kirchhoff’s node law:

Ii =
∑
k �=i

σ(i,k)(Vk − Vi) =
∑
k �=i

σ(i,k)Vk −

∑

k �=i

σ(i,k)


 Vi,

which can be expressed in a matrix form:

�I = L �V , (1)

where �V = (V1, V2, . . . , Vn)
T, �I = (I1, I2, . . . , In)

T, and L is the Laplacian matrix of the
circuit (see e.g. [7, 8] for a recent application): Lii = ∑

j �=i σ(i,j) for diagonal entries, and
Lij = −σ(i,j) for nondiagonal entries. Since Kirchhoff’s law for currents states that

∑
i Ii = 0,

the entries of L are linearly dependent, and det(L) = 0.
We now consider the Kn graph, the basic cell (or 1st-generation fractal) of the n-simplex

lattice (figure 3). The admittance between pole i and pole j is σ
(1)

(i,j). The relation between

external currents and potentials is �I = L(1) �V , where L(1) is the Laplacian matrix of the
1st-generation fractal:
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Figure 3. The K5 graph and the labelling used. External potentials are not shown.




L
(1)
ii =

∑
j �=i

σ
(1)

(i,j) diagonalentries

L
(1)
ij = −σ

(1)

(i,j) i �= j.

(2)

If we start from the Laplacian matrix, the admittances of the network are given by its off-
diagonal terms: σ

(1)

(i,j) = −L
(1)
ij . This relation will play an important role in our following

calculations.
In several expressions in the following we will sum over links rather than over vertices:

thus, we will find it useful to label links with numbers from 1 to n(n − 1)/2, rather than with
pairs. In that case we will use greek letters: (i, j) ≡ α, with α = 1, 2, . . . , n(n− 1)/2; hence,
instead of σ

(1)

(i,j), the form σ (1)
α will also be used.

2.2. Construction of a network of admittances: higher generations and the decimation map

Given the 1st-generation fractal, the 2nd-generation fractal is built as follows. n samples of
generation 1 are arranged counterclockwise, and labelled with the same numbers as the poles
of the basic graph (see figure 4, left, for graph K5). Then we connect (short-circuit) pole i of
basic graph j with pole j of basic graph i, with j �= i; such connected poles are termed the
‘internal poles’ of the resulting graph; the related potentials are called v(i,j) (note that there is
a one-to-one correspondence between the internal potentials of the second-order fractal and
the links of the basic graph). The poles that are left free from this procedure, i.e. every pole i
of graph i, are the external poles of the 2nd-generation fractal, with their incoming currents Ii

and external potentials Vi .
This circuit (figure 4) is equivalent to that built on a 1st-generation fractal, whose

admittances we will call σ
(2)

(i,j) (the equivalence comes from the fact that both circuits have

n(n−1)/2 degrees of freedom). In general, σ (g)

(i,j) will be the admittances of the 1st-generation

circuit equivalent to that built on a gth-generation fractal with σ
(1)

(i,j) on the basic cell. We want

to find the decimation map D connecting the
{
σ

(1)

(i,j)

}
to the

{
σ

(2)

(i,j)

}
:

�σ (2) = D(�σ (1)), (3)

so that for a gth-generation fractal

�σ (g) = Dg(�σ (1)).

In two dimensions the decimation is carried out by means of the star-delta (or star-mesh)
transformations from electrostatics [9] (figure 5). Given a triangle-shaped circuit, it is always
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Figure 4. Left: construction of the 2nd-generation fractal starting from a basic cell with admittances
σ

(1)
(i,j). Dashed lines denote short circuits between poles, coinciding with internal poles. The internal

potentials are called v(i,j); they are in a one-to-one correspondence with the links of the basic cell.
The external potentials are not shown. Right: the circuit built on the 2nd-generation fractal is
equivalent to that built of a 1st-generation fractal with new admittances σ

(2)
(i,j).

possible to find an equivalent star-shaped circuit, with an additional central pole, and new
admittances that depend on the old ones via easy algebraic relations. The vice versa (star-
to-mesh) is also always possible. For a general complete graph we can define a generalized
version of the star-mesh transformation: given a complete Kn graph (a generalized mesh),
find the star graph with an additional hub pole that is equivalent to the mesh (mesh-to-star);
or vice versa (star-to-mesh).

It turns out, however [10], that for n > 3 only the star-to-mesh transformation is
always possible, while the mesh-to-star transformation is possible only under very restrictive
conditions. These are the so-called Wheatstone conditions: in every four-link subgraph of the
mesh forming a quadrilateral, the products of opposite admittances must be equal. Since these
conditions are not satisfied in general, a different approach must be sought. Our approach,
based on the direct manipulation of the Laplacian matrix of the circuit, has been used in [6]
for n = 4. Here we show a general method valid for any n.

3. Decimation: general method, fixed points and asymptotic expansion

3.1. General procedure

The Laplacian matrix of the 2nd-generation fractal is

L(2) =

i=1,...,n α=1,...,n (n−1)/2

D ΣT

Σ M

.
(4)
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Figure 5. A circuit built on a 3-simplex (a triangle) is always equivalent to another circuit built on
a star (left): this is the star-triangle, or star-mesh, transformation. For a generic n-simplex lattice
(right) a generalized star-to-mesh transformation is still valid, while the mesh-to-star transformation
holds only under Wheatstone’s conditions.

We use an indexing such that the first n indices of a row (or column) refer to external points
(and are labelled as the nodes of the basic cell), the last n(n − 1)/2 refer to internal points
(and are labelled as the links of the basic cell).

D is a diagonal n × n matrix with entries Dii = ∑
j �=i σ

(1)

(i,j) (since an external pole has no
links with other external poles).

Matrix Σ, which has internal pole labels (links of the basic cell) as row indices and
external pole labels (nodes of the basic cell) as column indices, has only two entries different
from zero: {

�αk = −σ (1)
α for α incident in k in the basic cell

�αk = 0 otherwise.
(5)

M is a [n(n − 1)/2] × [n(n − 1)/2] symmetric matrix. Its entries correspond to internal poles
(hence, to links of the basic cell). M has entries


Mαα = 2σ (1)
α +

∑
β adjacent to α

σ
(1)
β for diagonal entries

Mαβ = −σ
(1)
β if links α and β of the basic cell are adjacent

Mαβ = 0 if links α and β of the basic cell are not adjacent.

(6)

Kirchhoff’s equations for the graph are:(
D ΣT

Σ M

)( �V
�v
)

=
(

D �V + ΣT�v
Σ �V + M�v

)
=

(�I
0

)
.

Hence, we have two sets of equations. From the second set (regarding the internal poles), we
get M�v = −Σ �V , and we can find the internal potentials as functions of σ

(1)

(i,j): �v = −M−1Σ �V .

Now we plug this solution into the first set of equations and get (D − ΣTM−1Σ) �V = �I .
Hence, by comparison with equation (2), we find that

L(1) = D − ΣTM−1Σ,

where the left-hand side is understood to depend on σ
(2)

(i,j), and the right-hand side on σ
(1)

(i,j).
The decimation map D is given by the off-diagonal entries:

σ
(2)

(i,j) = −(L(1))ij = (ΣTM−1Σ)ij . (7)

In general, (M−1)αβ = Pαβ/�, where Pαβ is a homogeneous polynomial of degree n(n−3)/2
in the variables {σ(i,j)}, while � = det(M) is a homogenous polynomial of degree n(n − 1)/2
in the variables {σ(i,j)}.
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From these considerations it follows that D is an n(n − 1)/2-dimensional rational map
from C

n(n−1)/2
∞ to C

n(n−1)/2
∞ in the variables {σ(i,j)}, where C∞ = C ∪ {∞}; we refer the reader

to the specific literature [11] for the language of dynamical systems and rational maps. By
construction, D is homogeneous of degree 1 in its variables: D(λ�σ) = λD(�σ), λ ∈ C. This
property allows us to recover a physical meaning for those points with a negative real value
(the physical constraint on the admittance σ of a passive element being that Re(σ ) � 0).
Indeed, if a result holds for a �σ , it also holds for all λ�σ , λ ∈ C. Hence, a vector �σ is
‘physically meaningful’ provided that there exists a λ ∈ C such that Re(λσα) � 0 ∀α. For
instance, a vector such as �σ = (−1, 1, 1, . . . , 1) makes sense since it can be multiplied, e.g.,
for i to give (−i, i, i, . . . , i) (a set of capacitive and inductive admittances), while the vector
(1 + i, 1 − i,−1, . . .) cannot be mapped by multiplication into any physically meaningful
point. The requirement a set of admittances must satisfy to have a physical meaning is that
the set of the vectors representing them in the complex plane covers an angle �180◦.

The number of terms in expression (7) grows very fast with n (approximately as n!): for
example, the number of terms in � = det(M) is 7 for n = 3, 293 for n = 4, 61763 for n = 5.
Hence, the map is impossible to study as it is. We will focus here on its asymptotic properties.
First, we can show that the isotropic point at 0 is an attracting fixed point for D. Second, by
perturbation of the isotropic solution, we can find the exact asymptotic expansion of D near
the fixed point for any n.

3.2. The isotropic fractal and fixed points

In the isotropic fractal all the admittances have the same value:

σ(i,j) = σ0 ∀i, j.

Matrix M ≡ M0 gets the general form


(M0)αα = 2(n − 1)σ0 for diagonal entries

(M0)αβ = −σ0 α and β adjacent

(M0)αβ = 0 α and β not adjacent.

The general form of its inverse M−1
0 is



(
M0

−1)
αα

= n + 6

2n(n + 2)
σ−1

0 diagonal entries

(
M0

−1
)
αβ

= 3

2n(n + 2)
σ−1

0 α and β adjacent

(
M0

−1
)
αβ

= 2

2n(n + 2)
σ−1

0 α and β not adjacent,

as can be checked by direct multiplication. The general form of −L(1)
0 = ΣT

0 M−1
0 Σ0 is


(−L(1)

0

)
ii

= 2n − 2

n + 2
σ0 diagonal entries(−L(1)

0

)
ij

= n

n + 2
σ0 off-diagonal entries.

By looking at the off-diagonal entries of −L(1)
0 , we find that D maps isotropic vectors into

isotropic vectors with a scaling factor of n/(n + 2):

D(�σ0) = n

n + 2
�σ0,
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where �σ0 = (σ0, σ0, . . . , σ0). The isotropic point at 0 is an attractor for map D, with the
leading term of the asymptotic behaviour:

σ (g)
α ∼

( n

n + 2

)g

σ0 ∀α for g → ∞, (8)

where g is the generation of the fractal and σ0 depends on the initial conditions. Recalling that
the linear size of the fractal scales as 2g , the exponent ζ̄ = ln[(n + 2)/n]/ln 2 for the scaling
of the isotropic conductance introduced in section 1 is recovered.

3.3. Perturbation of the isotropic fractal and asymptotic expansion

We now add a small perturbation to the isotropic fractal by incrementing variable σ(1,2) by a
value ε:

σ(1,2) = σ0 + ε, while σ(i,j) = σ0 for (i, j) �= (1, 2),

with ε/σ0 small. M and Σ are increased by infinitesimal matrices: M = M0 + δM;
Σ = Σ0 + δ�, and the equation for −L(1) becomes

− L(1) = ΣTM−1Σ ∼ (Σ0 + δ�)T (M0 + δM)−1 (Σ0 + δ�)

∼ (
ΣT

0 + δ�T) (
I − M−1

0 δM
)

M−1
0 (Σ0 + δ�)

∼ ΣT
0 M−1

0 Σ0︸ ︷︷ ︸
isotropic solution

+ ΣT
0 M−1

0 δ� + δ�TM−1
0 Σ0 − ΣT

0 M−1
0 δMM−1

0 Σ0︸ ︷︷ ︸
perturbation

= − L(1)
0 − δL(1). (9)

Knowing the explicit expressions of δM and δ�, the calculation of the terms contributing to
−δL(1) is lengthy but not difficult. We omit here the details and give only the final result.
−δL(1) is a symmetric n × n matrix with entries:



− 3n + 2

(n + 2)2
ε diagonal entries (1, 1) and (2, 2)

5n − 2

(n + 2)2
ε entries (1, 2) and (2, 1)

n − 2

(n + 2)2
ε entries (1, i) and (2, i), i �= 1, 2

−2

(n + 2)2
ε entries (i, j), with i, j �= 1, 2.

By looking at the off-diagonal entries, we see that by incrementing σ(1,2) the admittances
undergo the following changes:



σ(1,2): σ0 + ε −→ n

n + 2
σ0 +

5n − 2

(n + 2)2
ε

σ(1,i), σ(2,i): σ0 −→ n

n + 2
σ0 +

n − 2

(n + 2)2
ε

σ(i,j): σ0 −→ n

n + 2
σ0 − 2

(n + 2)2
ε.

This means that in general, by incrementing each admittance σα by its own infinitesimal
quantity near the isotropic point σα → σ0 + εα (in vector notation �σ → �σ0 + �ε), and labelling
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with α′ the links adjacent to α, with α′′ the links not adjacent to α, the map changes the
increments in the following way:

εα −→ 5n − 2

(n + 2)2
εα︸ ︷︷ ︸

diagonal term

+
∑
α′

n − 2

(n + 2)2
εα′︸ ︷︷ ︸

adjacent links

+
∑
α′′

−2

(n + 2)2
εα′′︸ ︷︷ ︸

non-adjacent links

.

In conclusion, in the vicinity of the isotropic point D gets the linearized form:

D (�σ0 + �ε) ∼ n

n + 2
�σ0 + E�ε, (10)

where E is a perturbation matrix with entries:


Eαα = 5n − 2

(n + 2)2
diagonal entries

Eαβ = n − 2

(n + 2)2
α and β adjacent

Eαβ = −2

(n + 2)2
α and β not adjacent.

(11)

The following section is devoted to the study of the eigenvalues and eigenspaces of E.

4. Eigenvalues and eigenspaces of the linearized map

The basic result is that matrix E has three eigenvalues e1, e2, e3 for any n (with e3 disappearing
only for n = 3). Their values and multiplicities are:

eigenvalue multiplicity

e1 = n

n + 2
1

e2 = n(n + 1)

(n + 2)2
n − 1

e3 = 3n

(n + 2)2

1

2
n(n − 3).

We call E1, E2, E3 the subspaces spanned by e1, e2, e3, respectively.
The isotropic vector with 1 on all the links is an eigenvector of E (since all rows are

permutations of each other). The eigenvalue is the sum of the entries of a row, which is easily
shown to be n

n+2 . This could be expected from equation (3.2), since an equal increment of ε

for all admittances just shifts the system to the different isotropic point σ0 + ε.

4.1. Eigenvectors corresponding to e2: Wheatstone’s conditions

The eigenvectors for eigenvalue e2 can be built as follows. Take two vertices of the graph, for
instance 1 and 2, and consider the link (1, 2) joining them. Then build a vector this way: all
the n − 2 links incident with 1, except link (1, 2), are given the value 1; all the n − 2 links
incident with node 2, except link (1, 2), are given the value −1; link (1, 2) and all the other
links have value 0. We call�f(1,2) this vector; in general we call�f(i,j) the vector built in this way
starting from link (i, j). Figure 6 shows two of these eigenvectors for the graph K5.

�f(i,j) can be shown to be an eigenvector for matrix E by direct multiplication for the
matrix. An easier and physically more interesting way is seeing that for vectors �σ0 + ε�f(i,j)
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Figure 6. Some eigenvectors of the matrix E of the linearized map for the K5 graph: thin lines
denote links with value 0, thick continuous lines denote links with value 1 and thick dotted lines
denote links with value −1. Vectors �f(1,2) and �f(1,3), which are eigenvectors for the eigenvalue e2,
are shown on the first two graphs from the left. A 4-loop with alternating 1 and −1 on its links is
shown on the graph on the right: it is an eigenvector for eigenvalue e3.

Figure 7. A K5 graph with σ0 = 1 perturbed with an eigenvector ε�f(1,2) corresponding to
eigenvalue e2 (left). The circuit satisfies Wheatstone’s conditions to first order in ε: in every
subgraph forming a quadrilateral the products of opposite admittances are equal. A generalized
mesh-star transformation is thus possible (right).

Wheatstone’s conditions mentioned in section 2 hold to first order; hence, a generalized mesh-
star transformation is valid (figure 7). The star equivalent to this mesh has an admittance equal
to n(σ0 + ε) for links (0, i) (0 being the additional central node), n(σ0 − ε) for links (0, j)

and nσ0 on all the other links. The decimation can then be carried out with the same easy
topological procedures described in [9] for the 3-simplex lattice, yielding n

n+2 �σ0 + n(n+1)

(n+2)2 ε�f(i,j).

It can be easily shown that the set �f(1,j) (with i = 1 fixed and j = 2, . . . , n) is a set of
linearly independent (not orthogonal) vectors. Furthermore, any other �f(k,l) can be obtained
from this set by means of the formula �f(k,l) = �f(1,l) −�f(1,k). Hence, the number of independent
vectors of this eigenspace (the multiplicity of the eigenvalue e2) is n − 1.

The eigenvalue e2 corresponds to the well-known anisotropy exponent λ̄ =
ln(e1/e2)/ln 2 = ln[(n+2)/(n+1)]/ln 2 discussed in the introduction. However, the dimension
of the eigenspace E2 and the Wheatstone property were not known up to now.

4.2. Eigenvectors corresponding to e3: even-cycle space and crossover property

In the graph theory, a cycle of length 	, or 	-cycle, is a closed walk (sequence of connected
vertices) composed of 	 distinct points and links. The eigenvectors for eigenvalue e3 are all
the cycles of even length with alternating 1 and −1 on their links, and 0 on the links not
belonging to the cycle (we will call them simply ‘even cycles’ henceforth, with the implicit
assumption on the value of their links). One such eigenvector for K5 is shown in figure 6, on
the right, in the case of a four-cycle. In this case, the property of being an eigenvector for E
has to be verified by direct multiplication.
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Figure 8. A six-cycle obtained from two four-cycles in the way shown above in a K6 graph. The
same is true for any even cycle: four-cycles form a good basis for the space E3.

The eigenvalue e3 corresponds to a secondary anisotropy exponent with value µ̄ =
ln(e1/e3)/ln 2 = ln[(n + 2)/3]/ln 2. The new exponent appears when the contribution of the
first anisotropy exponent λ̄ is negligible, that is, if we start from a configuration orthogonal
(or almost orthogonal) to the space E2.

Since a generic even cycle can be obtained from a linear combination of four-cycles
(figure 8), four-cycles are a basis for the space E3. The number N4,n of linearly independent
four-cycles on a Kn graph (the multiplicity of e3) can be computed (for example, by recurrence
starting from a K4 graph) and is found to be N4,n = 1

2n(n − 3). For n = 3, when the basic
cell is a triangle (and the fractal is the usual two-dimensional Sierpiński gasket), there are no
even loops and the only eigenvalues are e1 and e2 [9]. For n � 5, the eigenspace E3 is that
with the largest dimensionality, growing as n2 for n � 1, as opposed to that of E2 that grows
as n.

When the starting configuration is not exactly orthogonal to E2, the behaviour of the
projection of �σ onto E3 displays an interesting crossover property, due to the homogeneity
of the map D, which makes the value of µ̄ deviate from that calculated in the first-order
approximation. In order to see it, we need to calculate the second-order term in the series
expansion for the projection of �σ onto E3: it typically contains quadratic contributions of the
form

(. . .)
σ 2

(1,2)

σ0
+ (. . .)

σ(1,2)σ(1,3)

σ0
+ · · · ,

where the (. . .) denote some constant. Due to σ0 in the denominator, for g → ∞, the leading
term of this expansion is proportional to(

e2
2

e1

)g

=
(

n(n + 1)2

(n + 2)3

)g

> (e3)
g.

Hence, the asymptotic behaviour ∼(e3)
g normally holds only for some iterations (the number

of which depend on the initial conditions), then the second-order term ∼(
e2

2

/
e1

)g
prevails.

This means that the second anisotropy exponent µ̄ crosses over from µ̄ = ln[(n + 2)/3]/ln 2
to µ̄ = ln[(n + 2)3/n(n + 1)2]/ln 2.

5. Conclusions

We have extended the method used in [6] to find the decimation map D for a network of
admittances on a generic n-simplex lattice. By means of a linear expansion near the isotropic
fixed point of the map, we have found the first-order asymptotic behaviour of D for every n.
The eigenspaces of the linearized map have been found to be always three (two just for n = 3),
and to have a direct interpretation in terms of graph theory. In particular, the third eigenspace
is connected to the set of even-length cycles on the basic cell, and its eigenvalue is related to



12408 R Burioni et al

a secondary anisotropy exponent µ̄ with a value that crosses over from ln[(n + 2)/3]/ln 2 to
ln[(n + 2)3/n(n + 1)2]/ln 2 with the size of the fractal.

Due to a well-established correspondence between electrical networks and random walks
[12], our results could be easily extended to the random walk problem on these lattices, with
jumping probabilities depending on the direction. Since our method of direct manipulation of
the Laplacian matrix is quite general, we are currently studying its application to other exactly-
decimable fractals, to non-exactly-decimable fractals (with some proper approximations) and
to more general graphs.
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